Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.01.30.526101

ABSTRACT

Although the rapid development of therapeutic responses to combat SARS-CoV-2 represents a great human achievement, it also demonstrates untapped potential for advanced pandemic preparedness. Cross-species efficacy against multiple human coronaviruses by the main protease (MPro) inhibitor nirmatrelvir raises the question of its breadth of inhibition and our preparedness against future coronaviral threats. Herein, we describe sequence and structural analyses of 346 unique MPro enzymes from all coronaviruses represented in the NCBI Virus database. Cognate substrates of these representative proteases were inferred from their polyprotein sequences. We clustered MPro sequences based on sequence identity and AlphaFold2-predicted structures, showing approximate correspondence with known viral subspecies. Predicted structures of five representative MPros bound to their inferred cognate substrates showed high conservation in protease:substrate interaction modes, with some notable differences. Yeast-based proteolysis assays of the five representatives were able to confirm activity of three on inferred cognate substrates, and demonstrated that of the three, only one was effectively inhibited by nirmatrelvir. Our findings suggest that comprehensive preparedness against future potential coronaviral threats will require continued inhibitor development. Our methods may be applied to candidate coronaviral MPro inhibitors to evaluate in advance the breadth of their inhibition and identify target coronaviruses potentially meriting advanced development of alternative countermeasures.

2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.12.472313

ABSTRACT

There is enormous ongoing interest in characterizing the binding properties of the SARS-CoV-2 Omicron Variant of Concern (VOC) (B.1.1.529), which continues to spread towards potential dominance worldwide. To aid these studies, based on the wealth of available structural information about several SARS-CoV-2 variants in the Protein Data Bank (PDB) and a modeling pipeline we have previously developed for tracking the ongoing global evolution of SARS-CoV-2 proteins, we provide a set of computed structural models (henceforth models) of the Omicron VOC receptor-binding domain (omRBD) bound to its corresponding receptor Angiotensin-Converting Enzyme (ACE2) and a variety of therapeutic entities, including neutralizing and therapeutic antibodies targeting previously-detected viral strains. We generated bound omRBD models using both experimentally-determined structures in the PDB as well as machine learningbased structure predictions as starting points. Examination of ACE2-bound omRBD models reveals an interdigitated multi-residue interaction network formed by omRBD-specific substituted residues (R493, S496, Y501, R498) and ACE2 residues at the interface, which was not present in the original Wuhan-Hu-1 RBD-ACE2 complex. Emergence of this interaction network suggests optimization of a key region of the binding interface, and positive cooperativity among various sites of residue substitutions in omRBD mediating ACE2 binding. Examination of neutralizing antibody complexes for Barnes Class 1 and Class 2 antibodies modeled with omRBD highlights an overall loss of interfacial interactions (with gain of new interactions in rare cases) mediated by substituted residues. Many of these substitutions have previously been found to independently dampen or even ablate antibody binding, and perhaps mediate antibody-mediated neutralization escape (e.g., K417N). We observe little compensation of corresponding interaction loss at interfaces when potential escape substitutions occur in combination. A few selected antibodies (e.g., Barnes Class 3 S309), however, feature largely unaltered or modestly affected protein-protein interfaces. While we stress that only qualitative insights can be obtained directly from our models at this time, we anticipate that they can provide starting points for more detailed and quantitative computational characterization, and, if needed, redesign of monoclonal antibodies for targeting the Omicron VOC Spike protein. In the broader context, the computational pipeline we developed provides a framework for rapidly and efficiently generating retrospective and prospective models for other novel variants of SARS-CoV-2 bound to entities of virological and therapeutic interest, in the setting of a global pandemic.

3.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.01.407148

ABSTRACT

Sexual dimorphisms in immune responses contribute to coronavirus disease 2019 (COVID-19) outcomes, yet the mechanisms governing this disparity remain incompletely understood. We carried out sex-balanced sampling of peripheral blood mononuclear cells from confirmed COVID-19 inpatients and outpatients, uninfected close contacts, and healthy controls for 36-color flow cytometry and single cell RNA-sequencing. Our results revealed a pronounced reduction of circulating mucosal associated invariant T (MAIT) cells in infected females. Integration of published COVID-19 airway tissue datasets implicate that this reduction represented a major wave of MAIT cell extravasation during early infection in females. Moreover, female MAIT cells possessed an immunologically active gene signature, whereas male counterparts were pro-apoptotic. Collectively, our findings uncover a female-specific protective MAIT profile, potentially shedding light on reduced COVID-19 susceptibility in females.


Subject(s)
COVID-19
4.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.01.406637

ABSTRACT

Three-dimensional structures of SARS-CoV-2 and other coronaviral proteins archived in the Protein Data Bank were used to analyze viral proteome evolution during the first six months of the COVID-19 pandemic. Analyses of spatial locations, chemical properties, and structural and energetic impacts of the observed amino acid changes in >48,000 viral proteome sequences showed how each one of the 29 viral study proteins have undergone amino acid changes. Structural models computed for every unique sequence variant revealed that most substitutions map to protein surfaces and boundary layers with a minority affecting hydrophobic cores. Conservative changes were observed more frequently in cores versus boundary layers/surfaces. Active sites and protein-protein interfaces showed modest numbers of substitutions. Energetics calculations showed that the impact of substitutions on the thermodynamic stability of the proteome follows a universal bi-Gaussian distribution. Detailed results are presented for six drug discovery targets and four structural proteins comprising the virion, highlighting substitutions with the potential to impact protein structure, enzyme activity, and functional interfaces. Characterizing the evolution of the virus in three dimensions provides testable insights into viral protein function and should aid in structure-based drug discovery efforts as well as the prospective identification of amino acid substitutions with potential for drug resistance.


Subject(s)
COVID-19
5.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.01.407007

ABSTRACT

Sex differences in the risk of SARS-CoV-2 infection have been controversial and the underlying mechanisms of COVID-19 sexual dimorphism remain understudied. Here we inspected sex differences in SARS-CoV-2 positivity, hospitalization, admission to the intensive care unit (ICU), sera immune profiling, and two single-cell RNA-sequencing (snRNA-seq) profiles from nasal tissues and peripheral blood mononuclear cells (PBMCs) of COVID-19 patients with varying degrees of disease severity. Our propensity score-matching observations revealed that male individuals have a 29% increased likelihood of SARS-CoV-2 positivity, with a hazard ration (HR) 1.32 (95% confidence interval [CI] 1.18-1.48) for hospitalization and HR 1.51 (95% CI 1.24-1.84) for admission to ICU. Sera from male patients at hospital admission had decreased lymphocyte count and elevated inflammatory markers (C-reactive protein, procalcitonin, and neutrophils). We found that SARS-CoV-2 entry factors, including ACE2, TMPRSS2, FURIN and NRP1, have elevated expression in nasal squamous cells from males with moderate and severe COVID-19. Cell-cell network proximity analysis suggests possible epithelium-immune cell interactions and immune vulnerability underlying a higher mortality in males with COVID-19. Monocyte-elevated expression of Toll like receptor 7 (TLR7) and Bruton tyrosine kinase (BTK) is associated with severe outcomes in males with COVID-19. These findings provide basis for understanding immune responses underlying sex differences, and designing sex-specific targeted treatments and patient care for COVID-19.


Subject(s)
Carcinoma, Squamous Cell , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL